Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.091
Filtrar
1.
Neuroscience ; 540: 117-127, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38278472

RESUMO

Ethanol is one of the most commonly used and abused substances in the world. While the behavioral effects of ethanol are well characterized, mechanisms of its action on neurons and synapses remain elusive. Prior research suggested that ethanol could affect neurons by interfering with metabolism of biologically active molecules, such as adenosine. Here, we explored the involvement of adenosine A1 receptors (A1R) in mediating ethanol's effects on synaptic transmission to layer 2/3 pyramidal neurons of visual cortex using wild type (WT) and A1R knock-out (KO) mice. Ethanol differentially affected excitatory and inhibitory transmission in WT and KO mice. In slices from WT mice ethanol had heterogeneous effects on excitatory transmission (facilitation, suppression or no change), with no net change. Ethanol's effects remained heterogeneous during acute blockade of A1Rs with a selective antagonist DPCPX. However, in A1RKO mice ethanol consistently suppressed excitatory transmission, with no cases of enhancement observed. Inhibitory transmission was suppressed by ethanol in both WT and A1RKO mice. At both excitatory and inhibitory synapses, changes of response amplitude correlated with changes of paired-pulse ratio, suggesting involvement of presynaptic mechanisms. We conclude that A1Rs are not involved in mediating effects of ethanol on synaptic transmission in mouse visual cortex. However, A1Rs are necessary for development of mechanisms mediating facilitation at some excitatory synapses. Our results add evidence for the diversity of ethanol's effects and mechanisms of action on synaptic transmission in different brain structures, and even in the same brain area (visual cortex) in different species, rats vs mice.


Assuntos
Etanol , Córtex Visual , Ratos , Camundongos , Animais , Etanol/farmacologia , Adenosina/metabolismo , Camundongos Knockout , Transmissão Sináptica/fisiologia , Sinapses/metabolismo , Receptores Purinérgicos P1/metabolismo , Córtex Visual/fisiologia
2.
Mol Pharmacol ; 105(3): 213-223, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38182432

RESUMO

This study describes the localization and computational prediction of a binding site for the A3 adenosine receptor (A3AR) positive allosteric modulator 2-cyclohexyl-1H-imidazo[4,5-c]quinolin-4-(3,4-dichlorophenyl)amine (LUF6000). The work reveals an extrahelical lipid-facing binding pocket disparate from the orthosteric binding site that encompasses transmembrane domain (TMD) 1, TMD7, and Helix (H) 8, which was predicted by molecular modeling and validated by mutagenesis. According to the model, the nearly planar 1H-imidazo[4,5-c]quinolinamine ring system lies parallel to the transmembrane segments, inserted into an aromatic cage formed by π-π stacking interactions with the side chains of Y2847.55 in TMD7 and Y2938.54 in H8 and by π-NH bonding between Y2847.55 and the exocyclic amine. The 2-cyclohexyl group is positioned "upward" within a small hydrophobic subpocket created by residues in TMDs 1 and 7, while the 3,4-dichlorophenyl group extends toward the lipid interface. An H-bond between the N-1 amine of the heterocycle and the carbonyl of G291.49 further stabilizes the interaction. Molecular dynamics simulations predicted two metastable intermediates, one resembling a pose determined by molecular docking and a second involving transient interactions with Y2938.54; in simulations, each of these intermediates converges into the final bound state. Structure-activity-relationships for replacement of either of the identified exocyclic or endocyclic amines with heteroatoms lacking H-bond donating ability were consistent with the hypothetical pose. Thus, we characterized an allosteric pocket for 1H-imidazo[4,5-c]quinolin-4-amines that is consistent with data generated by orthogonal methods, which will aid in the rational design of improved A3AR positive allosteric modulators. SIGNIFICANCE STATEMENT: Orthosteric A3AR agonists have advanced in clinical trials for inflammatory conditions, liver diseases, and cancer. Thus, the clinical appeal of selective receptor activation could extend to allosteric enhancers, which would induce site- and time-specific activation in the affected tissue. By identifying the allosteric site for known positive allosteric modulators, structure-based drug discovery modalities can be enabled to enhance the pharmacological properties of the 1H-imidazo[4,5-c]quinolin-4-amine class of A3AR positive allosteric modulators.


Assuntos
Aminas , Receptores Purinérgicos P1 , Simulação de Acoplamento Molecular , Regulação Alostérica , Receptores Purinérgicos P1/metabolismo , Sítios de Ligação , Sítio Alostérico , Simulação de Dinâmica Molecular , Lipídeos
3.
J Phys Chem B ; 128(4): 914-936, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236582

RESUMO

A structure-based drug design pipeline that considers both thermodynamic and kinetic binding data of ligands against a receptor will enable the computational design of improved drug molecules. For unresolved GPCR-ligand complexes, a workflow that can apply both thermodynamic and kinetic binding data in combination with alpha-fold (AF)-derived or other homology models and experimentally resolved binding modes of relevant ligands in GPCR-homologs needs to be tested. Here, as test case, we studied a congeneric set of ligands that bind to a structurally unresolved G protein-coupled receptor (GPCR), the inactive human adenosine A3 receptor (hA3R). We tested three available homology models from which two have been generated from experimental structures of hA1R or hA2AR and one model was a multistate alphafold 2 (AF2)-derived model. We applied alchemical calculations with thermodynamic integration coupled with molecular dynamics (TI/MD) simulations to calculate the experimental relative binding free energies and residence time (τ)-random accelerated MD (τ-RAMD) simulations to calculate the relative residence times (RTs) for antagonists. While the TI/MD calculations produced, for the three homology models, good Pearson correlation coefficients, correspondingly, r = 0.74, 0.62, and 0.67 and mean unsigned error (mue) values of 0.94, 1.31, and 0.81 kcal mol-1, the τ-RAMD method showed r = 0.92 and 0.52 for the first two models but failed to produce accurate results for the multistate AF2-derived model. With subsequent optimization of the AF2-derived model by reorientation of the side chain of R1735.34 located in the extracellular loop 2 (EL2) that blocked ligand's unbinding, the computational model showed r = 0.84 for kinetic data and improved performance for thermodynamic data (r = 0.81, mue = 0.56 kcal mol-1). Overall, after refining the multistate AF2 model with physics-based tools, we were able to show a strong correlation between predicted and experimental ligand relative residence times and affinities, achieving a level of accuracy comparable to an experimental structure. The computational workflow used can be applied to other receptors, helping to rank candidate drugs in a congeneric series and enabling the prioritization of leads with stronger binding affinities and longer residence times.


Assuntos
Furilfuramida , Simulação de Dinâmica Molecular , Humanos , Ligantes , Fluxo de Trabalho , Termodinâmica , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P1/metabolismo , Desenho de Fármacos , Adenosina
4.
Purinergic Signal ; 20(1): 35-45, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36918461

RESUMO

Interest has been focused in recent years on the analgesic effects exerted by adenosine and its receptors, A1, A2A, A2B, and A3 adenosine receptor (AR) subtypes, in different in vivo models of chronic pain. In particular, it was demonstrated that selective A3AR agonists reduced pro-nociceptive N-type Ca2+ channels in dorsal root ganglion (DRG) neurons isolated from rats and, by this mechanism, inhibit post inflammatory visceral hypersensitivity. In the present study, we investigate the effect of a previously reported irreversibly binding A3AR agonist, ICBM, on Ca2+ currents (ICa) in rat DRG neurons. Present data demonstrate that ICBM, an isothiocyanate derivative designed for covalent binding to the receptor, concentration-dependently inhibits ICa. This effect is irreversible, since it persists after drug removal, differently from the prototypical A3AR agonist, Cl-IB-MECA. ICBM pre-exposure inhibits the effect of a subsequent Cl-IB-MECA application. Thus, covalent A3AR agonists such as ICBM may represent an innovative, beneficial, and longer-lasting strategy to achieve efficacious chronic pain control versus commonly used, reversible, A3AR agonists. However, the possible limitations of this drug and other covalent drugs may be, for example, a characteristic adverse effect profile, suggesting that more pre-clinical studies are needed.


Assuntos
Dor Crônica , Gânglios Espinais , Ratos , Animais , Gânglios Espinais/metabolismo , Dor Crônica/metabolismo , Neurônios/metabolismo , Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptor A3 de Adenosina/metabolismo , Agonistas do Receptor A3 de Adenosina/farmacologia
5.
Br J Pharmacol ; 181(4): 547-563, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37218380

RESUMO

Traditionally, platelets are known to play an important role in haemostasis and thrombosis; however, they serve also as important modulators of inflammation and immunity. Platelets secrete adhesion molecules and cytokines, interact with leukocytes and endothelium, and express toll-like receptors involved in a direct interaction with pathogens. Platelets express A2A and A2B subtypes of receptors for adenosine. The activation of these receptors leads to an increase in cAMP concentration in the cytoplasm, thereby resulting in inhibited secretion of pro-inflammatory mediators and reduced cell activation. Therefore, platelet adenosine receptors could be a potential target for inhibiting platelet activation and thus down-regulating inflammation or immunity. The biological effects of adenosine are short-lasting, because the compound is rapidly metabolized; hence, its lability has triggered efforts to synthesize new, longer-lasting adenosine analogues. In this article, we have reviewed the literature regarding the pharmacological potential of adenosine and other agonists of A2A and A2B receptors to affect platelet function during inflammation. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Assuntos
Plaquetas , Trombose , Humanos , Adenosina/farmacologia , Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ativação Plaquetária , Trombose/metabolismo
6.
mBio ; 15(1): e0257123, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38108639

RESUMO

IMPORTANCE: Staphylococcus aureus is one of the leading causes of antimicrobial-resistant infections whose success as a pathogen is facilitated by its massive array of immune evasion tactics, including intracellular survival within critical immune cells such as neutrophils, the immune system's first line of defense. In this study, we describe a novel pathway by which intracellular S. aureus can suppress the antimicrobial capabilities of human neutrophils by using the anti-inflammatory adenosine receptor, adora2a (A2aR). We show that signaling through A2aR suppresses the pentose phosphate pathway, a metabolic pathway used to fuel the antimicrobial NADPH oxidase complex that generates reactive oxygen species (ROS). As such, neutrophils show enhanced ROS production and reduced intracellular S. aureus when treated with an A2aR inhibitor. Taken together, we identify A2aR as a potential therapeutic target for combatting intracellular S. aureus infection.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Humanos , Neutrófilos , Staphylococcus aureus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Via de Pentose Fosfato , Interações Hospedeiro-Patógeno , Anti-Infecciosos/metabolismo , Receptores Purinérgicos P1/metabolismo
7.
Front Immunol ; 14: 1273837, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077336

RESUMO

Introduction: The cyclic nucleotide cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger, which is known to play an important anti-inflammatory role. Astrocytes in the central nervous system (CNS) can modulate inflammation but little is known about the significance of cAMP in their function. Methods: We investigated cAMP dynamics in mouse olfactory bulb astrocytes in brain slices prepared from healthy and experimental autoimmune encephalomyelitis (EAE) mice. Results: The purinergic receptor ligands adenosine and adenosine triphosphate (ATP) both induced transient increases in cAMP in astrocytes expressing the genetically encoded cAMP sensor Flamindo2. The A2A receptor antagonist ZM241385 inhibited the responses. Similar transient increases in astrocytic cAMP occurred when olfactory receptor neurons were stimulated electrically, resulting in ATP release from the stimulated axons that increased cAMP, again via A2A receptors. Notably, A2A-mediated responses to ATP and adenosine were not different in EAE mice as compared to healthy mice. Discussion: Our results indicate that ATP, synaptically released by afferent axons in the olfactory bulb, is degraded to adenosine that acts on A2A receptors in astrocytes, thereby increasing the cytosolic cAMP concentration. However, this pathway is not altered in the olfactory bulb of EAE mice.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Animais , Astrócitos/metabolismo , Bulbo Olfatório/metabolismo , AMP Cíclico/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo
8.
Neurobiol Dis ; 188: 106341, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37918757

RESUMO

The antagonistic effect of adenosine on dopaminergic transmission in the basal ganglia indirect motor control pathway is mediated by dopamine D2 (D2R) and adenosine A2A (A2AR) receptors co-expressed on medium spiny striatal neurons. The pathway is unbalanced in Parkinson's disease (PD) and an A2AR blocker has been approved for use with levodopa in the therapy of the disease. However, it is not known whether the therapy is acting on individually expressed receptors or in receptors forming A2A-D2 receptor heteromers, whose functionality is unique. For two proteins prone to interact, a very recently developed technique, MolBoolean, allows to determine the number of proteins that are either non-interacting or interacting. After checking the feasibility of the technique and reliability of data in transfected cells and in striatal primary neurons, the Boolean analysis of receptors in the striatum of rats and monkeys showed a high percentage of D2 receptors interacting with the adenosine receptor, while, on the contrary, a significant proportion of A2A receptors do not interact with dopamine receptors. The number of interacting receptors increased when rats and monkeys were lesioned to become a PD model. The use of a tracer of the indirect pathway in monkeys confirmed that the data was restricted to the population of striatal neurons projecting to the GPe. The results are not only relevant for being the first study quantifying individual versus interacting G protein-coupled receptors, but also for showing that the D2R in these specific neurons, in both control and PD animals, is under the control of the A2AR. The tight adenosine/dopamine receptor coupling suggest benefits of early antiparkinsonian treatment with adenosine receptor blockers.


Assuntos
Doença de Parkinson , Ratos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Neurônios Espinhosos Médios , Adenosina/metabolismo , Reprodutibilidade dos Testes , Corpo Estriado/metabolismo , Receptores Dopaminérgicos/metabolismo , Primatas/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D1/metabolismo
9.
ChemMedChem ; 18(21): e202300299, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37675643

RESUMO

The A3 adenosine receptor is an interesting target whose role in cancer is controversial. In this work, a structural investigation at the 2-position of the [1,2,4]triazolo[1,5-c]pyrimidine nucleus was performed, finding new potent and selective A3 adenosine receptor antagonists such as the ethyl 2-(4-methoxyphenyl)-5-(methylamino)-[1,2,4]triazolo[1,5-c]pyrimidine-8-carboxylate (20, DZ123) that showed a Ki value of 0.47 nM and an exceptional selectivity profile over the other adenosine receptor subtypes. Computational studies were performed to rationalize the affinity and the selectivity profile of the tested compounds at the A3 adenosine receptor and the A1 and A2A adenosine receptors. Compound 20 was tested on both A3 adenosine receptor positive cell lines (CHO-A3 AR transfected, THP1 and HCT16) and on A3 negative cancer cell lines, showing no effect in the latter and a pro-proliferative effect at a low concentration in the former. These interesting results pave the way to further investigation on both the mechanism involved and potential therapeutic applications.


Assuntos
Neoplasias , Receptor A3 de Adenosina , Cricetinae , Animais , Relação Estrutura-Atividade , Receptor A3 de Adenosina/metabolismo , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/metabolismo , Linhagem Celular , Pirimidinas/química , Antagonistas de Receptores Purinérgicos P1/farmacologia , Antagonistas de Receptores Purinérgicos P1/química , Células CHO , Receptor A2A de Adenosina
10.
BMC Res Notes ; 16(1): 165, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563689

RESUMO

OBJECTIVE: To ensure reproducibility in biomedical research, the biological variable sex must be reported; yet a reason for using male (instead of female) rodents is seldom given. In our search for novel adenosine receptor ligands, our research group routinely determines a test compound's binding affinities at male Sprague-Dawley rat (r) adenosine A1 and A2A receptors via in vitro radioligand binding studies. This pilot study compared the binding affinities of four adenosine receptor ligands (frequently used as reference standards) at male and female adenosine rA1 and rA2A receptors. RESULTS: The inhibition constant (Ki) values determined using female rats correspond well to the values obtained using male rats and no markable difference could be observed in affinity and selectivity of reference standards. For example, DPCPX the selective adenosine A1 receptor antagonist: male rA1Ki: 0.5 ± 0.1 nM versus female rA1Ki: 0.5 ± 0.03 nM; male rA2AKi: 149 ± 23 nM versus female rA2AKi: 135 ± 29 nM. From the limited data at hand, we conclude that even when using female rats for in vitro studies without regard for the oestrous cycle, the obtained data did not vary much from their male counterparts.


Assuntos
Adenosina , Antagonistas de Receptores Purinérgicos P1 , Feminino , Ratos , Masculino , Animais , Adenosina/farmacologia , Ratos Sprague-Dawley , Ligantes , Projetos Piloto , Reprodutibilidade dos Testes , Receptores Purinérgicos P1/metabolismo
11.
Biomed Pharmacother ; 165: 115184, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37506580

RESUMO

Adenosine is an endogenous nucleoside that regulates many physiological and pathological processes. It is derived from either the intracellular or extracellular dephosphorylation of adenosine triphosphate and interacts with cell-surface G-protein-coupled receptors. Adenosine plays a substantial role in protecting against cell damage in areas of increased tissue metabolism and preventing organ dysfunction in pathological states. Targeting adenosine metabolism and receptor signaling may be an effective therapeutic approach for human diseases, including cardiovascular and central nervous system disorders, rheumatoid arthritis, asthma, renal diseases, and cancer. Several lines of evidence have shown that many drugs exert their beneficial effects by modulating adenosine signaling pathways but this knowledge urgently needs to be summarized, and most importantly, actualized. The present review collects pharmaceuticals and pharmacological or diagnostic tools that target adenosine signaling in their primary or secondary mode of action. We overviewed FDA-approved drugs as well as those currently being studied in clinical trials. Among them are already used in clinic A2A adenosine receptor modulators like istradefylline or regadenoson, but also plenty of anti-platelet, anti-inflammatory, or immunosuppressive, and anti-cancer drugs. On the other hand, we investigated dozens of specific adenosine pathway regulators that are tested in clinical trials to treat human infectious and noninfectious diseases. In conclusion, targeting purinergic signaling represents a great therapeutic challenge. The actual knowledge of the involvement of adenosinergic signaling as part of the mechanism of action of old drugs has open a path not only for drug-repurposing but also for new therapeutic strategies.


Assuntos
Trifosfato de Adenosina , Adenosina , Humanos , Adenosina/fisiologia , Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Membrana Celular/metabolismo , Transdução de Sinais/fisiologia
12.
Pharmacol Ther ; 249: 108504, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482099

RESUMO

Pulmonary fibrosis is a debilitating and life-limiting lung condition in which the damage- response mechanisms of mixed-population cells within the lungs go awry. The tissue microenvironment is drastically remodelled by aberrantly activated fibroblasts which deposit ECM components into the surrounding lung tissue, detrimentally affecting lung function and capacity for gas exchange. Growing evidence suggests a role for adenosine signalling in the pathology of tissue fibrosis in a variety of organs, including the lung, but the molecular pathways through which this occurs remain largely unknown. This review explores the role of adenosine in fibrosis and evaluates the contribution of the different adenosine receptors to fibrogenesis. Therapeutic targeting of the adenosine receptors is also considered, along with clinical observations pointing towards a role for adenosine in fibrosis. In addition, the interaction between adenosine signalling and other profibrotic signalling pathways, such as TGFß1 signalling, is discussed.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/metabolismo , Fibrose , Fibroblastos/metabolismo , Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo
13.
J Cell Mol Med ; 27(15): 2150-2164, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37278400

RESUMO

Ovarian cancer is the deadliest gynecologic cancer worldwide, and the therapeutic options are limited. PARP inhibitor (PARPi) represents an effective therapeutic strategy and has been approved for maintenance therapy. However, the intrinsic or acquired resistance to PARPi becomes a big challenge. To investigate the mechanisms for PARPi resistance, we analysed public databases and established Olaparib-resistant ovarian cancer cells for exploration. Our results showed that the inflammatory pathway and adenosine receptor A2b (Adora2b/A2B ) expression were significantly increased in Olaparib-resistant cells. A2B was highly expressed in recurrent ovarian tumours and negatively correlated with the clinical outcomes in cancer patients. Olaparib treatment enhanced A2B expression through NF-κB activation. The elevated A2B contributed to Olaparib resistance by sensing adenosine signal and promoting tumour cell survival, growth and migration via IL-6-STAT3 signalling. Therefore, inhibition of A2B -IL-6-STAT3 axis could overcome Olaparib resistance and synergize with Olaparib to reduce cancer cell growth and lead to cell death. Our findings reveal a critical role of A2B signalling in mediating PARPi resistance independent of DNA damage repair, providing insights into developing novel therapies in ovarian cancers.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Interleucina-6/genética , Interleucina-6/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Antineoplásicos/farmacologia , Receptores Purinérgicos P1/metabolismo , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo
14.
Molecules ; 28(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375315

RESUMO

Currently, the number of patients with neurodegenerative pathologies is estimated at over one million, with consequences also on the economic level. Several factors contribute to their development, including overexpression of A2A adenosine receptors (A2AAR) in microglial cells and up-regulation and post-translational alterations of some casein kinases (CK), among them, CK-1δ. The aim of the work was to study the activity of A2AAR and CK1δ in neurodegeneration using in-house synthesized A2A/CK1δ dual anta-inhibitors and to evaluate their intestinal absorption. Experiments were performed on N13 microglial cells, which were treated with a proinflammatory CK cocktail to simulate an inflammatory state typical of neurodegenerative diseases. Results showed that the dual anta-inhibitors have the ability to counteract the inflammatory state, even if compound 2 is more active than compound 1. In addition, compound 2 displayed an important antioxidant effect similar to the reference compound ZM241385. Since many known kinase inhibitors are very often unable to cross lipid bilayer membranes, the ability of A2A/CK1δ double anta-inhibitors to cross the intestinal barrier was investigated by an everted gut sac assay. HPLC analysis revealed that both compounds are able to cross the intestinal barrier, making them promising candidates for oral therapy.


Assuntos
Caseína Quinase Idelta , Doenças Neurodegenerativas , Humanos , Regulação para Cima , Doenças Neurodegenerativas/tratamento farmacológico , Receptores Purinérgicos P1/metabolismo , Receptor A2A de Adenosina/metabolismo
15.
Life Sci ; 328: 121896, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37385371

RESUMO

AIMS: The aim of this study was to explore the fibrogenic effects of ATP-P1Rs axis and ATP-P2Rs axis on alcohol-related liver fibrosis (ALF). MATERIALS AND METHODS: C57BL/6J CD73 knock out (KO) mice were used in our study. 8-12 weeks male mice were used as an ALF model in vivo. In conclusion, after one week of adaptive feeding, 5 % alcohol liquid diet was given for 8 weeks. High-concentration alcohol (31.5 %, 5 g/kg) was administered by gavage twice weekly, and 10 % CCl4 intraperitoneal injections (1 ml/kg) were administered twice weekly for the last two weeks. The mice in the control group were injected intraperitoneally with an equivalent volume of normal saline. Fasting for 9 h after the last injection, blood samples were collected, and related indicators were tested. In vitro, rat hepatic stellate cells (HSCs) were treated with 200 µM acetaldehyde to establish an alcoholic liver fibrosis for 48 h, then tested related indicators. KEY FINDINGS: We found that both adenosine receptors including adenosine A1, A2A, A2B, A3 receptors (A1R, A2AR, A2BR, A3R) and ATP receptors including P2X7, P2Y2 receptors (P2X7R, P2Y2R) were expressed increased in ALF. After CD73 was knocked out, we found that adenosine receptors expression decreased, ATP expression increased, and fibrosis degree decreased. SIGNIFICANCE: Based on the research, we discovered that adenosine plays a more important role in ALF. Therefore, blocking the ATP-P1Rs axis represented a potential treatment for ALF, and CD73 will become a potential therapeutic target.


Assuntos
Etanol , Cirrose Hepática , Ratos , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/prevenção & controle , Cirrose Hepática/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Camundongos Knockout , Fígado/metabolismo
16.
Exp Brain Res ; 241(7): 1887-1904, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37335362

RESUMO

A single adenosine receptor gene (dAdoR) has been detected in Drosophila melanogaster. However, its function in different cell types of the nervous system is mostly unknown. Therefore, we overexpressed or silenced the dAdoR gene in eye photoreceptors, all neurons, or glial cells and examined the fitness of flies, the amount and daily pattern of sleep, and the influence of dAdoR silencing on Bruchpilot (BRP) presynaptic protein. Furthermore, we examined the dAdoR and brp gene expression in young and old flies. We found that a higher level of dAdoR in the retina photoreceptors, all neurons, and glial cells negatively influenced the survival rate and lifespan of male and female Drosophila in a cell-dependent manner and to a different extent depending on the age of the flies. In old flies, expression of both dAdoR and brp was higher than in young ones. An excess of dAdoR in neurons improved climbing in older individuals. It also influenced sleep by lengthening nighttime sleep and siesta. In turn, silencing of dAdoR decreased the lifespan of flies, although it increased the survival rate of young flies. It hindered the climbing of older males and females, but did not change sleep. Silencing also affected the daily pattern of BRP abundance, especially when dAdoR expression was decreased in glial cells. The obtained results indicate the role of adenosine and dAdoR in the regulation of fitness in flies that is based on communication between neurons and glial cells, and the effect of glial cells on synapses.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Masculino , Feminino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Longevidade , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Sono/genética , Neurônios/metabolismo , Neuroglia , Receptores Purinérgicos P1/metabolismo , Ritmo Circadiano/fisiologia
17.
Mol Neurobiol ; 60(10): 5878-5890, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37358743

RESUMO

Hippocampal demyelination in multiple sclerosis (MS) has been linked with cognitive deficits, however, patients could benefit from treatment that induces oligodendroglial cell function and promotes remyelination. We investigated the role of A1 and A2A adenosine receptors (AR) in regulating oligodendrocyte precursor cells (OPCs) and myelinating oligodendrocyte (OL) in the demyelinated hippocampus using the cuprizone model of MS. Spatial learning and memory were assessed in wild type C57BL/6 mice (WT) or C57BL/6 mice with global deletion of A1 (A1AR-/-) or A2A AR (A2AAR-/-) fed standard or cuprizone diet (CD) for four weeks. Histology, immunofluorescence, Western blot and TUNEL assays were performed to evaluate the extent of demyelination and apoptosis in the hippocampus. Deletion of A1 and A2A AR alters spatial learning and memory. In A1AR-/- mice, cuprizone feeding led to severe hippocampal demyelination, A2AAR-/- mice had a significant increase in myelin whereas WT mice had intermediate demyelination. The A1AR-/- CD-fed mice displayed significant astrocytosis and decreased expression of NeuN and MBP, whereas these proteins were increased in the A2AAR-/- CD mice. Furthermore, Olig2 was upregulated in A1AR-/- CD-fed mice compared to WT mice fed the standard diet. TUNEL staining of brain sections revealed a fivefold increase in the hippocampus of A1AR-/- CD-fed mice. Also, WT mice fed CD showed a significant decrease expression of A1 AR. A1 and A2A AR are involved in OPC/OL functions with opposing roles in myelin regulation in the hippocampus. Thus, the neuropathological findings seen in MS may be connected to the depletion of A1 AR.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Camundongos , Animais , Cuprizona/toxicidade , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Esclerose Múltipla/patologia , Hipocampo/metabolismo , Receptores Purinérgicos P1/metabolismo
18.
Eur J Pharmacol ; 951: 175777, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37182594

RESUMO

The adenosine A1 receptor plays important roles in tuning free fatty acid (FFA) levels and represents an attractive target for metabolic disorders. Though remarkable progress has been achieved in the exploitation of effective (orthosteric) A1 receptor agonists in modulating aberrant FFA levels, the effect of A1 receptor allosteric modulation on lipid homeostasis is less investigated. Herein we sought to explore the effect of an allosteric modulator on the action of an A1 receptor orthosteric agonist in regulating the lipolytic process in vitro and in vivo. We examined the binding kinetics of a selective A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA) in the absence or presence of an allosteric modulator (2-amino-4,5-dimethyl-3-thienyl)-[3-(trifluoromethyl)-phenyl]methanone (PD81,723) on rat adipocyte membranes. We also examined the allosteric effects of PD81,723 on mediating the CCPA-induced inhibition of cAMP accumulation, HSL (hormone-sensitive lipase) phosphorylation and FFA production in in vitro and in vivo models. Our results demonstrated that PD81,723 slowed down the dissociation of CCPA from the A1 receptor, which, consequently, potentiated the antilipolytic action of CCPA through downregulating the cAMP/HSL pathway. Our study exemplified the application of A1 receptor allosteric modulators as an alternative for metabolic disease treatments.


Assuntos
Tecido Adiposo , Receptores Purinérgicos P1 , Ratos , Animais , Receptores Purinérgicos P1/metabolismo , Tecido Adiposo/metabolismo , Adipócitos , Lipólise , Adenosina/metabolismo , Receptor A1 de Adenosina/metabolismo , Regulação Alostérica
19.
Exp Neurol ; 365: 114427, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37116638

RESUMO

The retinotectal topography of rats develops within the first three postnatal weeks during the critical period. Previous studies have shown that monocular enucleation results in plasticity of the intact retinotectal pathway in a time-dependent manner. Glial fibrillary acidic protein (GFAP), an astrocyte marker, is up-regulated after central nervous system injury. Adenosine is a neuromodulator involved in the development and plasticity of the visual system acting through the inhibitory A1 and excitatory A2a receptor activities. Herein, we examined whether adenosine receptors and astrocytes are crucial for monocular enucleation (ME)-induced plasticity. We also investigate whether A2a blockade alters retinotectal plasticity in an astrocyte-dependent manner. Lister Hooded rats were submitted to monocular enucleation at postnatal day 10 (PND10) or PND21 and, after different survival times, were processed for immunohistochemistry or western blotting assays. Another group underwent subpial implantation of ELVAX containing vehicle (DMSO) or SCH58261 (1 µM - an A2a receptor antagonist), simultaneously with ME at PND10. After a 72 h survival, GFAP content and the retinotectal plasticity were evaluated. Our data show that monocular enucleation leads to an upregulation in GFAP expression in the contralateral superior colliculus. At PND10, a slight increase in GFAP labeling was observed at 72 h post-enucleation, while at PND21 GFAP increase was detected in the deafferented superior colliculus after 1 to 3 weeks of survival. The content of adenosine receptors also varies in the contralateral target after ME. A transient increase in A1 receptors is observed in the early periods of plasticity, while A2a receptors are upregulated later. Interestingly, the local blockade of A2a receptors abolished the increase in GFAP and the retinotectal reorganization induced by monocular enucleation during the critical period. Taken together these results suggest a correlation between astrocytes and A2a adenosine receptors in the subcortical visual plasticity.


Assuntos
Astrócitos , Colículos Superiores , Animais , Ratos , Astrócitos/metabolismo , Enucleação Ocular , Colículos Superiores/metabolismo , Receptores Purinérgicos P1/metabolismo , Imuno-Histoquímica , Receptor A2A de Adenosina/metabolismo
20.
Front Immunol ; 14: 1111369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911717

RESUMO

Extracellular adenosine (eADO) signaling has emerged as an increasingly important regulator of immune responses, including tumor immunity. eADO is mainly produced from extracellular ATP (eATP) hydrolysis. eATP is rapidly accumulated in the extracellular space following cell death or cellular stress triggered by hypoxia, nutrient starvation, or inflammation. eATP plays a pro-inflammatory role by binding and activating the P2 purinergic receptors (P2X and P2Y), while eADO has been reported in many studies to mediate immunosuppression by activating the P1 purinergic receptors (A1, A2A, A2B, and A3) in diverse immune cells. Consequently, the hydrolysis of eATP to eADO alters the immunosurveillance in the tumor microenvironment (TME) not only by reducing eATP levels but also by enhancing adenosine receptor signaling. The effects of both P1 and P2 purinergic receptors are not restricted to immune cells. Here we review the most up-to-date understanding of the tumor adenosinergic system in all cell types, including immune cells, tumor cells, and stromal cells in TME. The potential novel directions of future adenosinergic therapies in immuno-oncology will be discussed.


Assuntos
Neoplasias , Receptores Purinérgicos P2 , Humanos , Adenosina/metabolismo , Receptores Purinérgicos P2/metabolismo , Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...